Img preview

Innovative eco friendly traps for the control of
Pine Lepidoptera in urban and recreational places


Type of information: TECHNICAL ARTICLES

In this section, you can access to the latest technical information related to the PISA project topic.

Delineation of Agricultural Drainage Pipe Patterns Using Ground Penetrating Radar Integrated with a Real-Time Kinematic Global Navigation Satellite System

Better methods are needed for mapping agricultural drainage pipe systems. Prior research on small test plots indicates that ground penetrating radar (GPR) is oftentimes capable of detecting buried drainage pipes; however, the feasibility of employing this geophysical technique in larger field areas has not been adequately evaluated. Ground penetrating radar integrated with a Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) may be an effective and efficient means of mapping drain lines within agricultural fields. Therefore, GPR-RTK/GNSS was tested in three agricultural settings; with Site 1 and Site 2 located in Beltsville, MD, USA and Site 3 near Columbus, OH, USA. Soils at the three sites ranged from silty clay loam to loamy sand. A GPR unit with 250 MHz antennas was used to detect drainage pipes, and at Sites 1 and 2, a physical GNSS base station was utilized, while a virtual base station was employed at Site 3. The GPR-RTK/GNSS configurations used in this study delineated a complex rectangular drainage pipe system at Site 1, with one set of drainage pipes oriented southwest-northeast and a second oriented southeast-northwest. At Site 2, a herringbone drain line pattern was outlined, and at Site 3, random drain lines were found. When integrated with RTK/GNSS, spiral or serpentine GPR transects (or spiral/serpentine segments of a GPR transects) were utilized to provide insight on drain line directional trends. Consequently, given suitable field conditions, GPR integrated with RTK/GNSS can be a valuable tool for farmers and drainage contractors needing to map subsurface drainage systems.

» Author: Barry Allred

» Reference: doi: 10.3390/agriculture8110167

» Publication Date: 24/10/2018

» More Information

« Go to Technological Watch

The development of this web server has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE13 ENV/ES/000504]

AIMPLAS Instituto Tecnológico del Plástico
C/ Gustave Eiffel, 4 (Valčncia Parc Tecnolňgic) 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40