Img preview

Innovative eco friendly traps for the control of
Pine Lepidoptera in urban and recreational places


Type of information: TECHNICAL ARTICLES

In this section, you can access to the latest technical information related to the PISA project topic.

Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field

This report is on the growth of Fe3O4 nanofilms on Al2O3(0001) and MgO(001) substrates with and without the presence of an external magnetic field using a pulsed injection metallorganic chemical vapour deposition (PI MOCVD) technique. The effects of growing magnetic oxide nanofilms in a 1 T field have been examined using various instrumental methods. It was found that the application of a magnetic field during PI MOCVD does not drastically alter the crystalline texture, surface morphology, and film thickness, but it significantly modifies the Fe3O4 film magnetisation and coercive field. Moreover, it was shown that the application of a 1 T field during the cooling of the sample also improves the magnetic properties. We believe that the large external field orients the magnetic spin structure at high temperatures (during growth or the initial stages of cool down) and that cooling through local magnetic ordering temperatures at Fe3O4 defect sites subsequently favours a ferromagnetic spin alignment. The control of magnetic properties of magnetite nanofilms by the application of magnetic fields during growth opens up new routes towards the fabrication and application of magnetic thin film devices.

» Author: Anna Zukova

» Reference: doi: 10.3390/nano8121064

» Publication Date: 17/12/2018

» More Information

« Go to Technological Watch

The development of this web server has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE13 ENV/ES/000504]

AIMPLAS Instituto Tecnológico del Plástico
C/ Gustave Eiffel, 4 (Valčncia Parc Tecnolňgic) 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40