Img preview

Innovative eco friendly traps for the control of
Pine Lepidoptera in urban and recreational places


Type of information: TECHNICAL ARTICLES

In this section, you can access to the latest technical information related to the PISA project topic.

A geospatial method for estimating soil moisture variability in prehistoric agricultural landscapes


Prehistoric peoples chose farming locations based on environmental conditions, such as soil moisture, which plays a crucial role in crop production. Ancestral Pueblo communities of the central Mesa Verde region became increasingly reliant on maize agriculture for their subsistence needs by AD 900. Prehistoric agriculturalists (e.g., Ancestral Pueblo farmers) were dependent on having sufficient soil moisture for successful plant growth. To better understand the quality of farmland in terms of soil moisture, this study develops a static geospatial soil moisture model, the Soil Moisture Proxy Model, which uses soil and topographic variables to estimate soil moisture potential across a watershed. The model is applied to the semi-arid region of the Goodman watershed in the central Mesa Verde region of southwestern Colorado. We evaluate the model by comparing the Goodman watershed output to two other watersheds and to soil moisture sensor values. The simple framework can be used in other regions of the world, where water is also an important limiting factor for farming. The general outcome of this research is an improved understanding of potential farmland and human-environmental relationships across the local landscape.

» Author: Andrew Gillreath-Brown,  Lisa Nagaoka,  Steve Wolverton

» Reference:

» Publication Date: 21/08/2019

» More Information

« Go to Technological Watch

The development of this web server has been co-funded with the support of the LIFE financial instrument of the European Union [LIFE13 ENV/ES/000504]

AIMPLAS Instituto Tecnológico del Plástico
C/ Gustave Eiffel, 4 (València Parc Tecnològic) 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40